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Additional symmetry of Clebsch-Gordan coefficients for 
core presentations 

J N Kotzev and M I Aroyo 
Faculty of Physics, University of Sofia, Sofia-1126, Bulgaria 

Received 29 September 1983 

Abstract. The concept of associated representations is generalised for the case of 
corepresentations. Symmetry relations for the Clebsch-Gordan coefficients based on the 
association of corepresentations are derived. This additional symmetry not only reduces 
the volume of the calculations and the tables of coupling coefficients, but it also improves 
the correlation between the coefficients. A simple method for obtaining the Clebsch- 
Gordan coefficients for odd (under space inversion) basis functions is proposed. 

1. Introduction 

Group theory, and particularly the method of irreducible tensorial sets, is widely 
applied in atomic, molecular and solid state spectroscopy (Griffith 1962, Sviridov et 
al 1964, Sviridov and Smirnov 1977). The basic elements of the algebra of irreducible 
tensorial sets for systems with magnetic symmetry are the Clebsch-Gordan coefficients 
(CGC) for the irreducible corepresentations (coreps) of the anti-unitary Shubnikov 
magnetic groups (Wigner 1959, Bradley and Cracknell 1972, Kotzev 1972, Kotzev 
and Aroyo 1977). Some of their properties, such as the permutational symmetry of 
the CGC for coreps [alala2azlarua]  and [a2azala,larua] which reduce the corep 
product D"I x Du2 and Du2 X D"1 corespondingly is discussed in detail elsewhere 
(Kotzev and Aroyo 1977, 1980, 1981, 1982a, 198213). A new type of symmetry of 
the CGC for coreps, which is connected with the operation of 'corep association', was 
briefly considered for the first time by Kotzev apd Aroyo (1982c, 1983). In fact, the 
study of 'associated coreps' is of general interest and is independent of the development 
of the Racah algebra for coreps, but here it is of practical significance because it leads 
to the additional symmetries of the CGC. 

Griffith (1962) seems to have been the first to use the concept of 'associated 
representations' for crystallographic point groups. The association of the single-valued, 
irreducible representations of the proper octahedral group 0 = 432 and the symmetry 
of the corresponding CGC was discussed by Griffith (1962), Sviridov et al (1964)' 
Sviridov and Smirnov (1977) and Harnung (1973); Lulek and Lulek (1975a, 1975b) 
considered the association of the representations of the double-cubic and trigonal 
groups and the related changes of the CGC. Symmetry relations of the symmetrised 
CGC, based on a special case of the association of representations were discussed by 
Butler and Ford (1979). 

The aim of this paper is to generalise the concept of associated representations for 
the case of corepresentations ( 0  2) and to derive symmetry relatiom for the correspond- 
ing CGC for coreps (0  3). We show that the symmetry of the CGC under association 
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not only reduces the volume of the calculations and the tables, but also improves the 
correlations between the sets of coefficients and restricts the ambiguity in their definition 
( 8  3). A simple method for the calculation of CGC for coreps for odd (under space 
inversion) basis functions is considered in 0 4. 

A natural, but very necessary, specification of the terminology should be made, 
before the presentation of the results. Throughout the paper we use the term 'a 
standard set of corepresentations', which means a set of the matrices of all coreps D" 
of a group d, which are chosen and fixed in a definite way. If there are no special 
requirements, it is advisable to choose the coreps in the so-called 'Wigner cannonical 
form' as the standard set of coreps (Wigner 1959, Bradley and Cracknell 1972). 
However, our results are not restricted to such a choice and the cases, for which it is 
of any importance, will be especially underlined. 

2. Associated corepresentations 

The concept of associated coreps is defined by Kotzev and Aroyo ( 1 9 8 2 ~  1983) 
analogously to the concept of associatied representations. The coreps D" and D"' are 
associated with the corep D A  if, 

D"' - DUIxA D" x DA. (1) 

Here '-' means equivalent and DA is one-dimensional corep, the associating corep. 
It is obvious that dim D"' =dim D" and the corep D"' is irreducible if and only if D" 
is irreducible. When D"' is equivalent to D", the corep D" is called a self-associated 
corep with respect to DA. The associating corep DA can be real or complex, but is 
always one dimensional. The Kronecker square of a real corep DA equals the identity 
corep D". and the corep, associated with D"' by DA is D". In this case, the coreps 
D" and D"' form an associative pair (if D"'+ D").  If DA is one-dimensional complex 
corep then its Kronecker square is not Duo and the set of coreps associated with DA 
contains more than two members, e.g. it can form a triad (D",  D"', D"") if D"'- 
D" X DA, D""- D"' X DA and D""X DA- D". Therefore, the coreps of a group can 
be classified into sets of associated coreps with respect to the association with a given 
corep DAi. It is obvious that the classification into associative sets can be different for 
different associating coreps DAi. 

As an example let us consider the group D 6 0 0  = 6221'. It has six single-valued 
and three double-valued coreps. With the help of the corep multiplication table of 
D 6 0 0  (see e.g. Kotzev and Aroyo 1982b) its coreps are classified into the following 
associative sets with respect to the one-dimensional real coreps DZ, D3 and D4. 

DA= D2: (D1, DZ), (D3 ,  D4), (OS), (D6), ( D 7 ) ,  (DS),  (D9) 

DA= D3: ( D 1 , D 3 ) , ( D 2 ,  D4),(D5,D6)(D7, D8)(D9) 

DA = D4: (D1, D4), ( DZ, D 3 ) ,  ( D5, D6), ( D7, O S ) ,  ( 0 9 ) .  

(2) 

Examples of triads of associated coreps can be found in the black and white magnetic 
group O( T )  = 4'32', whose coreps are classified with respect to the complex one- 
dimensional coreps 0' or D3 as follows 

Dz:  ( D ' ,  D z ,  D3) ,  (D4), (Os, D6, D7) 

D3: ( D ' ,  D3, D2), (D4), (Os, D7, 0'). 
(3) 
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By definition (l),  the associated corep DaxA is irreducible and is equivalent to one 
of the irreducible coreps D" of the same group. In the general case, the matrices of 
Dux* will differ from the standard set of matrices of D"'. It is obvious that the corep 
D a x A  can be transformed into the standard form D"' by the matrix of CGC for coreps 
D" and DA: 

(4) 

Here the asterisk in parenthesis means complex conjugation, which is applied only 
if g E G is an anti-unitary operator. Equation (4) is a more detailed definition of the 
corep D"',  associated with D" by DA. As we always work with a 'standard set of 
coreps', from now on we will follow the definition given by equation (4), which is 
equivalent to (1). 

( UeA) - ' (D"(g )  x D&)UaA(*)  = D"'(g).  

3. Symmetry properties of CGC for associated corepresentations 

CGC for coreps are defined (Kotzev 1972) as matrix elements of a unitary transformation 
U"l"2 which reduce the Kronecker product DnlXDu2 to a direct sum of irreducible 
coreps D"3 E Dui X DO': 

( 5 )  

where ez;"2 is an identity matrix, whose dimension equals ( ala21a3), the multiplicity 
of D"? in D"1 X D"2. 

From the relation between the associated coreps (4), a useful connection follows 
between the corresponding CGC matrices for coreps. The determination of such a 
relation will lead to new symmetries of the CGC (which Sviridov et a1 (1964), and 
Sviridov and Smirnov (1977) called 'symmetries of the second kind'). Such symmetries 
will not only reduce the volume of the calculation and tables of CGC for coreps, but 
will also improve the correlation between the 'independent' (without the relation) sets 
of CGC for coreps. 

We will derive this relation in a matrix form. Let us consider the most general 
case when association (4) is applied to all Due, i = 1, 2, 3 in equation (9, by different 
associating coreps D A 1 ,  DAz and DA3= DAi X DA2. (Special cases can be found by 
taking the identity corep Dun as one of DA' in the final formulae.) The corresponding 
associated coreps will be 

( U"Inz)-l(Dol(g) x D">(g))  U:"I:"Z(*) = CI3 (e",:"* x D Y g ) ) ,  VgE G 
" 3  

D"; (g) = ( U " i A I  )-'D"l(g) x D A Q )  U " l A I ( * )  

D"qg) = ( U"3A3)-1Dyg) x D*3(g)U"3A3(*) 
(6) D";(g) = ( Ua2Az)-1D"2(g) X DA2(g) 

VgE G. 

The direct product of associated coreps D"; X D"; can be reduced into irreducible 
components D"; E D";  x D"; with the CGC matrix U";";  

After the substitution of (6) into (7) and some elementary transformations, we get 
from equations (5 ) - (  7) 
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where 

It is obvious that the reducible coreps on the left- and right-hand sides of equation 
(8) are equivalent as they are reductions of D"1 X D"2X DAl X DA2 by two different 
schemes. For the RHS we have 

(DUI x 05) x (DA] x D A 2 )  

$ x D":), 

while the reduction in the LHS is according 

0: 

(Dol x 0")) x ( Duz x DA2) 

U " 1 A i  x U"lA2 I 
Dui x Dui 

to the scheme 

Evidently the Kronecker multiplicities of D"3 and DO3 are the same, (a ,a2ja3)  = 
( a i a i  lay) .  If the coreps D"; in the direct sums of (8)  are ordered in an appropriate 
manner then the matrices of the reducible coreps will coincide, as all the matrices of 
the irreducible coreps are in a standard form. So the matrix X commutes with all the 
matrices of the reducible corep [euS ( X D;ij)], Vg E G and according to the 
generalised Schur lemma for reducible corep (Kotzev and Aroyo 1983), it can be 
presented in the form of a similar direct sum by the indices a;(I of D"; E Dui x Dui 

X(a ,a2A,A2)  =$ ( X " I " ~ . " ' ~  X M u 3 ) .  (12) 

Here X " I " ~ ~ " ;  is an orthogonal matrix with dim Xu~"2'u; = (a1a21a3) = ( a ; a ; I a y ) .  

"5 

The arbitrary unitary matrices M u ;  commute with all the matrices of the corresponding 
irreducible coreps D";, i.e. they belong to its commutator algebra. 

The relation demanded between the CGC matrix for coreps Ualaz and the matrix 
of the coefficients U";";  for the associated coreps follows from equations (9) and (12): 

U";"; = (U"IA1 x UU2A2 ) - I (  U"lU2 x U A I ) [ 8 (ez;"2 x U - 3 ~ 3  

" 3  

r 
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We should note the obvious analogy of (13) with the Racah lemma generalised 
for coreps by (Kotzev and Aroyo (1977, 1980): 

1 @ ( e ; ;  x e;; x ~ p i P 2 )  =(sal x s " ~ ) - ~ U " I " ~  [ (ez:"2 x sa31 

(14) 

[ & P ,  1 
x [ @ ( x " l " z 3 ~ 3 X  M b 3 ) ] ,  

6 3  

where Uala2 and UPlp2 are the CGC matrices for coreps Dui of the group d and the 
corresponding CGC matrices for the coreps DBe of its subgroups 93 = d, respectively. 
The matrices Sat( i = 1, 2, 3) are the unitary transformations of the coreps Dug, while 
~ " 1 ~ 2 ~ ~ 3  is the orthogonal matrix, whose matrix elements are known as isoscalar factors, 

~ " 1 ~ 2 ~ ~ 3  = ll( a 1 P 1 Sp, 9 a 2 P 2 S p z ;  ~ 3 r ~ ~ l l a  1 a 2 ~ 3 r a 3 P 3 S p J I l .  (15) 

We can say that equation (13) is of the Racah lemma type, but drawn for a 
'horizontal' transition, i.e. the transition is not from a group to one of its subgroups 
('vertical' transition) but remains within the framework of the same group. We call 
the matrix elements of X"~u23"'; 'inner isoscalar factors' by analogy with the isoscalar 
factors, i.e. the matrix elements( 15). 

Therefore, the connection between the CGC U"l"2 and U";"; is determined within 
the following. 

(i) The arbitrary unitary matrices May,  dim Ma'; =dim Day, which appear due to 
the generalised Schur lemma (Kotzev and Aroyo 1983). Different independent sets 
of CGC for coreps can be obtained for different M"';. Since Ma';  can be arbitrary, in 
all our calculations we have used as a 'basic choice' May = E"';, the unit matrix. 

(ii) The orthogonal transformation XU1"z3"y, whose matrix elements are real, 

X a l a ~ s a ~ =  J I ( ~ y ~ a ~ a ~ r ~ , ,  A1A2A3rA3, a 3 A 3 a ~ r a . ; ( ( a l A l c ~ ,  a2A2a;, a;cu;cu~r,g)ll 

= ll(a1 a2a31a311a '1 a;'alS'ra: )I1 (16) 

and do not depend on the basis functions of D"';. The essential difference between 
the isoscalar factors (15) and the inner isoscalar factors (16) is that in the case of 
associated coreps there is a one to one correspondence between D"' and D", i.e. there 
is not a branching-type multiplicity in (16). 

The inner isoscalar factors can be examined from another point of view. The matrix 
X ,  [equations (9), (12)] gives the relation between the coreps, obtained by two different 
coupling schemes (10) and (11). The submatrices Xa1a23a~ in equation (12) are known 
in the quantum theory of angular momentum as X matrices of Racah. Their matrix 
elements, the X coefficients of Racah are equivalent to the 9j-symbols of Wiener. In 
our case the X coefficients (16) can be written in the following form: 

f f l  a 2  a 1 2  112  f f l  f f 2  f f 3  rc13 

a24 1 2 3 4  r13.24 a 2  a 3  ra,; 
X [ : y 3  f f 4  :34 i . 3 4  - X  - / I y ;  Ai A2 /? A3 /,I 1 (17) 

l 1 3  124 l12,34 1 1 1  

Consequently the matrix X a l a z ' u  ; accomplishes the rearrangement of the vectors 
of the carrier spaces of the equivalent reducible coreps of both sides of equation (8). 
A quite natural requirement is the one-to-one correspondence between the basis 
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vectors of these spaces for every a3 and a y ,  which leads to a diagonal form of X a i m 2 @ ' ~  
and M"';: 

where x(a ia ;a?reT)  = *l, since the matrix X"ln2."'; is orthogonal. 
Hence it is reasonable to choose the CGC for coreps U"l"2 and U";" ;  in such a 

way so that the inner isoscalar factors are of type (18). 
The CGC related by (1 3) with diagonal matrices X"l"2,"; (1 8) and the basic choice 

Mu" = E " ;  will be called 'completely associated CGC for coreps'. In this case the 
matrices Uaia2 and U";"; are related by the known U"iAl and UAlA2 up to a sign. 
We can write this symbolically as 

J 

Of course, the choice of (1 8) is only one of the numerous possibilities, but it is the 
most natural one. The relations (13) and (18) are deduced for the most general case 
(DAi # DA2# DA3) and it can easily be specified for the special cases when some of 
the associating coreps DA' coincide or one of them is the identity corep D"ll. 

One direct and useful application of the associative symmetry of the CGC for coreps 
(19) is in the problem of the ambiguity of the CGC. (From definition ( 5 )  it follows 
that the CGC are determined within an orthogonal transformation, whose dimension 
equals the sum of the Kronecker multiplicities of the resultant coreps De? E D"1 X D"2). 
It follows from (19) that this type of ambiguity for all completely associated CGC for 
coreps, i.e. CGC,  which couple associated coreps and satisfy (19), is reduced to only 
one orthogonal transformation for the whole set of associated CGC for coreps. 

For example, in equation (3) the seven coreps of the group O ( T )  = 4'32' are 
classified into three associative sets. The total number of CGC matrices U"l"2 is 49. 
We can arrange them in table 1, where we have used ' a I a 2 '  instead of U"i"2. 

Table 1. Matrices of CGC. 

11 12 13 14 15 16 11  

34 35 36 31  

@ @ 46 4 1  

51 52 53 54 

61 62 63 64 

11 72 13  14  

Due to the permutation symmetry between the matrices C J " l " 2  and U"~"1 the 
number of independent matrices is reduced to 28 (the upper part of the table 1). 
After the use of relation (18) between the completely associated CGC for coreps, the 
number of independent Uala2 (in the sense of an independent choice of the orthogonal 
transformation by the Kronecker multiplicity) is reduced to 9 matrices only-the 
encircled a la2  in the table 1. For example, using (19) and the associating corep D2, 
we can determine up to a sign all the CGC of the matrices U S 6 ,  US7,  U66, U6', and 
U77 from those of Us' only. 
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4. CGC for corepresentations for even and odd sets of basis functions 

It is well known that a number of physical quantities and wavefunctions are transformed 
as basis functions which are characterised by a definite parity in respect to space 
inversion, even in the cases when the inversion itself is not an element of the group 
(e.g. the electric and magnetic dipole moments, dipole active normal vibrations in 
molecules and crystals, etc). Using the generalised Racah lemma we have shown that 
the CGC for coreps, which are necessary for the coupling of odd and odd or odd and 
even basis function can be chosen to coincide up to a sign with the corresponding CGC 

for even basis (Kotzev and Aroyo 1981, 1982a, 1982b). The same statement can be 
proved quite independently with the help of associated coreps and associated CGC. 

We will consider the following two cases 
(i) Centrosymmetrical group G X Ci; the space inversion is an element of the group, 

and the even and the odd quantities are transforming by unequivalent coreps D"+ and 
D"- respectively. 

(ii) Anti-unitary groups containing improper rotations in the unitary subgroup 
HAG; the even the odd quantities are transformed by equivalent coreps but the 
corresponding CGC are different. 

In the remaining two cases, namely, the pure rotation groups, or the groups 
containing improper rotations as anti-unitary elements only, the even and odd quantities 
are transformed by equivalent coreps with identical choice of the corep matrices, and 
the corresponding CGC of coreps coincide. 

4.1. Case (i). Centrosymmetrical groups. 

All coreps of these groups can be classified into associative sets of the type (D"+, 
D"-) with respect to the one-dimensional real corep Duo, the pseudoscalar corep, 
where D"- = D"+X Duo. The connection between the CGC matrices U";"; and U";"; 
can be obtained directly from (13): 

According to the conventions used in our calculations (similar to the conventions 
adopted in the quantum theory of angular momentum) U " ~ " ~  = E u i ,  M"i= 
E"a(i = 1 ,2 ,3 )  and as D"- = D " + X  Duo are in a standard form, then U":"; = EUi. 
All of the CGC tabulated by us are completely associated, i.e. they are fulfiling (19). 
From these considerations and (19), we get 

(21) U";"; = *U";";. 

The exact sign (the inner isoscalar factors) is determined for each a,r,,-block of 
' 2 by a comparison between the coefficients obtained and the corresponding 

The same result can be obtained for the CGC U";"; and U";";, i.e. 

ua-u- 
Wigner coefficients for which we have U';'; = U';';. 
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4.2. Case (i i ) .  Non-centrosymmetrical groups 

To make things clearer, the discussion of the Shubnikov groups, whose unitary sub- 
groups contain improper rotations, will be carried out for a definite group-the 'grey' 
group Td@O (or its isomorphic 'black and white' group o h ( T d ) ) .  They are subgroups 
of the centrosymmetrical group o h @ @ .  The subduction of every irreducible coreps 
of Oh@@ on the group Td@@ is an irreducible corep of Td@@ and it is given in table 
2. 

As we have already noted the even +"' and odd +"- basis functions are transformed 
by inequivalent coreps D"' and D"- respectively, but the corresponding CGC for 
coreps (22) coincide. It is seen from table 2 that two types of basis functions are 
transforming by every corep D p  of Td@@: even, +", obtained from the corresponding 
functions +"+ of Do+, and odd, @", obtained from I,P- of De-. In the general case, 
a given D p  can be deduced from non-equivalent coreps D"+ and D"'-, (D"'J 53) = 
(D" ' - J  53) = Dp.  We shall underline the fact that I@" and $ p c  are transformed by one 
and the same Dp.  The CGC which couple odd and odd, even 
and odd and odd and even basis functions respectively, can be chosen to be completely 
associated (19) with the Uplp2, using Dl = (D'-& 53) as an associating corep with an 
odd basis function +lo. 

Analogously to the case of centrosymmetrical groups, we can show that these 
relations are of the type: 

Up;@;,  

UP76 = f u p ; p s .  (23) 

As in case (i), the necessary sign is obtained by a comparison with the phases of 
the corresponding coefficients U"I*"~*,  or with the Wigner coefficients. (In the general 
case Up:'; and Up;'; are related to different matrices of Wigner coefficients.) Con- 
sequently, the CGC coupling odd and even basis functions for Shubnikov groups with 
improper rotations in the unitary subgroup can be chosen to coincide up to a sign for 
each triad (P1P2P3r3). This choice is made in all our calculations of CGC for coreps 
of all 90 anti-unitary Shubnikov point groups (Kotzev and Aroyo, l981,1982a, 1982b). 
The only exception is the group TdOO, where we have not observed the choice (19) 
for some parts of the matrices U48 and UB8. This leads to non-fulfilment of (23) for 
the triads ( P 1 P 2 P 3 )  = (4 ,8,8) ,  (8 ,8 ,4) ,  (8 ,8 ,5) .  The completely associated CGC for 
these triads, satisfying (19) are given in table 3. The relations of type (23) for U48, 
U8' are given in table 4. If the CGC of table 5a of Kotzev and Aroyo (1981) are 
substituted by the ones given in table 3, then the corresponding rows in table 6 (Kotzev 
and Aroyo 1981) should be replaced by the factors given in table 4 and table 7 in 
Kotzev and Aroyo (1981) is not necessary. 

The complete tables of the inner isoscalar factors k l ,  giving the connection between 
the even and odd basis for coreps of all anti-unitary point groups of the type discussed 
are published in Kotzev and Aroyo (1981, 1982a, 1982b). 



Additional symmetry of CGC for coreps 735 

Table 3. Completely associated CGC for the corep triads (D'X D' : D4), (0' X 0': Os) ,  
(D4XD4:D8) of TdO@ and O,(T,). 

81 81 413-1/2 
81 81 423-1/8 
81 83 421-3/8 
81 84 412-114 
81 84 422-114 
82 82 411-1/2 
82 82 421 1/8 
82 83 412-1/4 
82 83 422 114 
82 84 424-3/8 
83 83 413-1/2 
83 83 423 1/8 

~ ~~~ ~ ~ 

84 84 411-1/2 
84 84 421-1/8 
41  81 814 2/3* 
41 81 824 1/6 
41 82 821-1/2 
41 83 812 2/3* 
41 83 822-1/6 
41 84 823-1/6 
42 81 811-1/3* 
42 81 821 1/3 
42 82 812 1/3* 

42 82 822 113 
42 83 813-1/3* 
42 83 823-1/3 
42 84 814 1/3* 
42 84 824-1/3 
43 81 822 1/2 
43 82 813-2/3* 
43 82 823 1/6 
43 83 824 1/2 
43 84 811-2/3* 
43 84 821-1/6 

Table4. Inner isoscalarfactorsfor U4', Us' and U8'for odd basesof Td@@ and Oh(Td). 

48 6*-5*+81+ 8; 6 +  7 + 8: + 8, 6* + f * +  8, + 8; 
58  6 + 7 +  8: + 8, a* + 5* + 8,  + 8; a +  5 +  8T+8, 
88 1*+2+  j* +al  +4,+ 5 7  + 5 ,  i+ Z* +3* +a: +5,  + 5 ,  + 5, i + 2 * +  3*+4T + d 2 + 5 ,  + 5, 
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